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The problem considered in this paper is best Lp approximation with multiple
constraints for I ~ P < x:. Characterizations of best Lp approximations from
multiple n-convex splines and functions are established and the relationship
between them is investigated. Applications to best monotone convex approximation
are studied. t 1991 Academic Press. Inc

I. I!'<TRODt.:CTIO~

In this paper, we consider best Lp approximation with multiple con
straints for I :::; p < x. The classes of approximating functions are the class
of multiple n-convex splines and the class of mUltiple n-convex functions,
which are defined below.

A real-valued function g is said to be n-convex in (0, I) if for any n + I
distinct points x o, x I' ... , X n in (0, I), the nth order divided difference is
nonnegative, i.e.,

The set of n-convex functions is a convex cone. Note that I-convex
functions are nondecreasing and 2-convex functions are convex in the usual
sense.

It is known (e.g., [2]) that if g is an n-convex function on (0, I) then
gIn 2) exists and is convex on (0, I). Hence, gin - 2) is absolutely continuous
on any closed subinterval of (0, I), the (n - I )st left-derivative gIn I) exists
and is left-continuous and nondecreasing in (0, I), the (n - I )st right
derivative gt;. - I) exists and is right-continuous and nondecreasing in (0, I),
gIn I) exists a.e. in (0, I), and gIn -- I) =gin - II = gl: I) a.e. in (0, I). If
g E en [0, I], then g is n-convex if and only if gIn) ~ 0. The set of n-convex
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functions contains the subspace of polynomials of degree n - 1. Some addi
tional properties of n-convex functions can be found in [2, II, 16, 19].

Given 0 ~ m ~ n, g is said to be (m, n )-convex if ( - I yg is (m + i)-convex
for i = 0, I, ... , n - m. Note that for n > m, (m, n )-convex functions are func
tions with multiple constraints. Let K m •n denote the set of (m, n )-convex
functions. Then clearly Km." is the finite intersection of k-convexity cones.
The finite intersections of generalized convexity cones with respect to an
ECT-system were defined in [20,21]. Clearly, K m ." is a finite intersection
of the convexity cone with respect to the ECT-system {I, X, x 2

, ... , x"-'}.
From the above definition, (n, n )-convex functions are n-convex func

tions and (0, n )-convex functions are n-time monotone functions. For some
applications of n-time monotone functions, see [18] and other references
therein. In addition, (0, ex: )-convex functions are completely monotone
functions (see [17]). More generally, we define (m, n la-convexity. Let
a = (ao, aI' ..., a ,,_ m)' where each a j is I or -1. A function g is said to be
(m,n)a-convex if aj(-I)'g is (m+i)-convex, for i=O, I, ... ,n-m. In this
paper, for the sake of simplicity we restrict ourselves to (m, n )-convex func
tions. All results we obtain here can be extended to the setting with
arbitrary a without any difficulty.

Let K/:,." denote the intersection of Km•n and Lp= Lp[O, I]. Then K/:,." is
a closed convex cone in Lp • Given a partition .1 of [0, I], with
.1: 0 = X o < X I < ... < X k t , = I, let S~(.1) denote the space of polynomial
splines of degree n - I with k simple knots at x I' ... , x k , i.e.,

S~(L1) = span{ (I -xY " i= 1,2, ... , n, (x}- X)",·I, j= 1,2, ..., k}.

Define

(1.1 )

Since polynomials of degree n - I are contained in both S~(L1) and Km.",

S:.,,(.1) is a nonempty convex cone. In particular, S~,.,,(A) is the set of
(m, n )-convex polynomials of degree n - 1.

GivenfELp[O,I], s*EK/:,." (resp., S~,.,,(.1)) is called a best (m,n)
convex (resp., (m, n )-convex spline) L p approximation to f if

If - 5*111' = inf{ Ilf - 5111': S E K/:,.,,(resp., S:.,,(A))}. (1.2)

The existence of a best n-convex L 1 approximation was proved in [7]
and [16] independently, and uniqueness is proved under some additional
restrictions in [22]. The characterizations of best I-convex (nondecreasing)
Lp approximations for I ~ P < 00 were established in [12, 13]. A partial
characterization of a best n-convex L 1 approximation was proved in [22].
The complete characterization of a best n-convex L p approximation, for
I ~ p < x, is considered in [14, 15, 19]. Existence of a best n-convex
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uniform approximation was proved in [3, 24]. Burchard [4] and
Brown [I] have characterized best uniform n-convex approximation.
Some additional properties of best uniform n-convex approximation are
considered in [23].

For I ~ p < ex, the existence of a best approximation to IE Lp[O, I]
from S:"/I(,1) follows from the fact that S:'./I(,1) is a finite dimensional,
closed subset of L p . For I < p < x, unicity follows from the fact that L p is
strictly convex. For p = I, unicity was proved by Pence in [9]. In Sec
tion 2, the characterizations of best (m, n )-convex spline L p approximations
for I ~ p < oc are established. As consequences, we also consider best LI'
approximation by n-convex splines of degree n - I.

For I < p < oc, the existence of a unique best LI' approximation from
K,~./I follows from the facts that L~;./I is closed and convex in the reflexive
Banach space Lp and that the LI' norm is uniformly convex. In Section 3,
we prove the existence of a best L I approaximation of I ELI [0, I] from
K:/I./I and characterize best Lp approximation to a function I in Lp[O, I]
from K ::'./1 for I ~ P < ex. An interesting relationship between best Lp

approximations to .rE CEO, I] from S~,./I(A) and K::'. n is investigated in
Section 4. In Section 5, best monotone convex LI' approximations are
studied and best convex LI' approximation is characterized in terms of best
monotone convex L p approximations.

2. BEST L p ApPROXIMATION FROM S:'./I(,1)

By a corollary of the Hahn -Banach Theorem (see [5, 6]), if Kp is a
convex cone in LI'[O, I] for I ~ P < ex, then

(i) for I <p< Xi, s;EKp is a best LI' approximation tOIELp[O, I]
from Kp if and only if

and

(2.1 )

forall sEKp, (2.2)

where <PI' = sign(.f - s;) II - s;1 I' - I; and

(ii) for p= I, srEK I is a best L , approximation to!EL1[O, I] from
K1 if and only if there exists a <PI E L", with !I<plilex.. = I andn<PI (.f - sn = il! - s~1I1' satisfying (2.1) and (2.2) with p = 1.

The above result shall be referred to as the duality theorem.
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Let dJi be a signed measure of bounded variation on (0, I). The dual
cone to a cone K of functions is the set of signed measures dJi such that

Ir g(x)dJi(x)~O
'0

for all g E K.

With this definition, the above duality theorem can be restated as follows:
For 1 < p <x s; E Kp is a best Lp approximation to fE Lp from Kp if and
only if cPp is orthogonal to .1'; and -cPp(x) dx is in the dual cone to Kp. For
p = I, we can similarly restate the duality theorem. The dual cone to a finite
intersection of generalized convexity cones with respect to an ECT-system
was characterized by Ziegler in [20, 21 ].

By applying the duality theorem, we have the following characterization
of best Lp approximation to f E Lp from S~,.,,(J) for 1~ P<x. Let
N",." = {m + I, ..., n} and N" = No.".

THEOREM 2.1 (Characterization). For I~p<x, let fELp[O, I] and
let S;ES~".,,(L1).

(a) For 1< p < x, let iP p= sign(f-s;)lf - .1';1 p- I, and

Hp.,(x) = {I/(i - I)!} r (x -t)1 IcPp(t) dt,
o

XE [0, I], iEN". (2.3)

Then .1'; is the hest Lp approximation to f from S~.,,(J) if' and only if'

(i) Hp.i(I)=O, iEN",;

(ii) (-I)"'Hp,i(l)~O, iEN",.,,;

(iii) (-l)mHp, ,,(x,) ~ 0, j E Nk ;

(iv) if (-I )mHp • i ( I) < 0 for some iE Nm,,,, then s;u II( I) = 0;

(v) if (-I)mHp.,,(xj)<O for some jENb then S;I"II(X;-)=
o*(,,-I)(v+)
"p "j'

(b) For p = I, sf is a hest L] approximation from S~.I,,(J) to f if and
only if there exists a cP, E L.x with IIr.6d", = 1and J6r.6I(f -sf)= Ilf -sflll
sati.~fying (i H v) of part (a) with p = 1. We call 1,6, an associated functional
of sf·

Proof (a) This proof will depend on the above duality theorem. Since
S~.,,(L1) is a closed convex cone in Lp[O, I], by the duality, .1'; is the best
approximation to f from S~,.,,(L1) if and only if

(2.4 )

640o, 1. 0
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for all S E S:.n(A). (2.5)

(Necessity) First, note that (l - xr l/U - I)!, - (l - x r - l/U - I)! E
S~.n(A) for i= 1,2, ..., m. By substituting these functions into inequality
(2.5), we find

r{(I-xr-1/(i-I)!} ~p(x)dx=O,
o

i = I, 2, ... , m.

This proves (i).
Next, since (_l)m(l-xY 1/(i-I)!ES~n(A), i=m+I, ...,n, by using

(2.5) once again, we obtain (ii). Similarly, in (2.5), let S =
(_I)m(x

j
_x)n+-l/(n -I )!, j= I, 2, ..., k, and we have

j= I, 2, ..., k

Now, by integrating by parts and by using (i),

n I

= L (-IYHp.i+I(I)s;(i)(l)
I=m

k

+ L (-ltHp.n[xj)[s;(n-ll(x/)_s;ln-l)(x; )],
j~ I

where ·the last equality holds because s; is a polynomial of degree n- I on
each subinterval (xj ' x j + I)' Combining the above equation with (2.4) gives

n I

L (-1) iH p.i + I (l) s;(i)(l)
i=m

k

+ L (-ltHp.n(xj)[s;ln 1)(X/)_s;(n-I)(X
j
--)] =0. (2.6)

j ~ 1

Since s;EKm.n, (-IY ms;(i)(I)~O and (_I)n m[s;(n-l)(x/)_
s;ln-I)(Xj-)]~O. It follows from (ii) and (iii) that each term in (2.6) is
nonpositive. Hence,

i = m, m + 1, ..., n - I, (2.7)
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and

(-I)"'Hp.n(.x)[s;(n I I(X/ )_S;ltI II(X, )]=0,
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j= 1,2, ... , k. (2.8)

Then (2.7) implies (iv) and (2.8) implies (v).

(Sufficiency) If S,~ E S:.tI(lI) satisfying conditions (i )-(v), then by
integation by parts, it is easy to verify that (2.4) and (2.5) hold. Therefore,
.1'; is the best approximation tolfrom S:l.tI(.1).

(b) The proof is similar to (a). Thus, we omit the details. This proves
Theorem 2.1.

We remark that since H~.I(x) = H~., I(X), conditions (i) (v) of
Theorem 2.1 can be restated in terms of H p. n and its derivatives. For exam
ple, conditions (i) and (ii) are equivalent to H ~.'n /)(1) = 0, i EN"" and
( - 1)'" H~'n Il( 1)~ 0, i E N",.tI' respectively.

In order to derive some structural properties of a best approximation, we
introduce some additional notation. Let 1~ P < x and ¢Jp E (L p )*, the dual
space of L p • Define H p., as in (2.3),

(2.9)

and

(2.10)

We define a subspace of S:(.d) by

S~ *( .1, ¢J1') = {.\' E S;,( A): s(/)( 1) = 0, i E l( ¢J p);

sin I,(X, )=S(tI--I'(X/),jEJ(¢Jp)}' (2.11)

It is easily proved that S~*(.1, ¢Jp) has a basis

{(I-x)' ',iENn-I(¢Jp),(xj-x)", l,jENk-J(¢Jp)}. (2.12)

The next theorem gives an alternate characterization of best L p

approximation from S:.n(.1), which indicates that best Lp approximation
from the convex set S:.n(;I) is equivalent to best Lp approximation from
the subspace S~*(.1, ¢Jp).

THEOREM 2.2. Let I ~ p < x and let f E Lp[O, I].

(a) For 1<p < ex, .1'; E S:.n(.1) is the best Lp approximation to ffrom
S:.n(.1) if and only if .1'; is the hest Lp approximation from S~*(.1, ¢Jp),
where
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(b) For p = I, s~ E S:.n(,1) is a hest L, approximation to f from
S~,.n(,1) if and only if'there is a ¢J,EL x with 11¢J,II:y.=1 and
fA ¢JICl - sn = Ilf - .1';" I" such that .1';" is a best L, approximation to ffrom
S~*(,1, rPd.

Proof Let I < p < ,x. By Theorem 2.1, .1'; is the best Lp approximation
to f from S: n(,1) if and only if conditions (i )-( v) are satisfied. It follows
from the definitions of [(rP p ) and J(rP p ) that conditions (i)-(v) are equiv
alent to the conditions

C(l-t)'-l¢Jp(t)dt=O, i EN" - [(rP p), (2.13 )
'0

and

r(x; - 1)".- '¢Jp(t) dt = 0, jENk-J(¢Jp)· (2.14)
0

This is equivalent to the statement that .1'; is the best L p approximation to
f from S~*(,1, ¢Jp ), since S:*(,1, rPp ) is a finite dimensional subspace of
S~(,1) and S~*(,1, rPp ) has the basis (2.12).

The proof of (b) is similar to that of (a). This completes the proof.

In the rest of this section we apply the general results that we just
obtained to best Lp approximations from S~. n(,1), the set of n-convex
splines of degree n - I, for I ~ p < x.

COROLLARY 2.1. For I ~ p < ,x" let f E Lp[O, I] and let .1'; E S~,n(,1).

(a) For I < p < 'Xl, the following statements are equivalent:

(1) .1'; is the best Lp approximation to f from S:,n(,1);

(2) .1'; satisfies three conditions

(i) H p,' ( 1) = 0, i = 1, 2, ',., n,

(ii) (_I)n Hp.n(x) ~ 0, j = 1,2, ..., k,

(iii) if (-I)"Hp.n(x;)<O for some jENk, then s;(n-I)(xj-)=
s;(n-l)(x/ ).

(3) .1'; is the best L p approximation to f from S:**(,1, rPp) defined
by
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(b) For p= 1, sr is a best L 1 approximation toffrom S~.n(LI) if and
only if there exists a ~I ELf. with I!~III x = 1 and g ~l(f - sn = Ilf- srlll,
satisfying the conditions (i)-(iii) of part (a) with p= 1, and if and only if
there exists a ~l as ahove such that s~ is the hest Lp approximation to ffrom
S~**(LI, ~Il.

3. BEST Lp ApPROXIMATION FROM K:,.n

In this section, we consider best L p approximation to f E L p from K/:'.n
for 1~ p< x.

First of all, we study the existence of a best (m, n )-convex L I approxima
tion. It will be proved to be a consequence of an existence theorem in a
recent paper [16] by Ubhaya. We first state a definition and a theorem
that appear in [16]. Let H be the set of all extended real-valued function
on [0,1]. We say Pc H is sequentially closed if it is closed under
pointwise convergence of sequences of functions. We denote by P the
smallest superset of P which is sequentially closed.

THEOREM 3.1 [16]. Let P he a nonempty set in H. Assume the following
two conditions are satisfied:

(1) PnLp=PnLp;

(2) There exists a positive integer z which depends on(v upon P, and
the following holds: If k E P, there exist an integer 1~ r ~ z and points
{x j :i=O,I ....,r} with 0=XO<x 1 <,,, <x,=1 so that k is monotone on
each interval (Xi I' xJ

Then a best approximation to f in Lp from P n L p exists for 1~ P < ,x.

The following theorem is a consequence of Theorem 3.1.

THEOREM 3.2. Let fELl [0, 1]. Then there exists a hest (m, n )-convex
L I approximation to f

Proof Let

K i = {g E H: (-1 Yg is (m + i)-convex}.

Then K",.n = n7,:-0'" K j • Thus,

K",.nnL1=("fj'" Ki)nL1="fj'" {K,nLd·
t= 0 1=0
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By Proposition 3.4 of [16 J, we have K, n L I = K; n L I' Hence,

/1-"'
Km."nL,= n (K;nL 1 )

J=()

= ("n" K,) n L,
, ~O

= ("n'" K;) n L,
I ()

= C:0~' K,) n LJ

=Km."nL 1 •

Therefore, condition (I) in Theorem 3.1 is satisfied. In addition, since an
(m, n )-convex function is m-convex, by a property of m-convec functions
(see [15, 16J), condition (2) is also satisfied. It follows from Theorem 3.1
that there exists a best L I approximation to f from K~,.". This completes
the proof.

Next we establish a characterization of best L p approximation by (m, n)

convex functions, for I ~ p < x. To do this, we first prove the following:

LEMMA 3.1. Let g he (m, n )-convex on [0, I]. Then gl" - 'I( I ) and
glm + o( I -), i = 0, 1, ..., n - m - 2, are finite.

Proof Since g is (m, n)-convex and (-g) is (m + I )-convex. We then
find that g(m) is nonincreasing and glm)(x) ~°for all x E (0, I). Hence, for
an arbitrarily small /; with °< /; < !,

O~g(m)(I-£)~g("'IW·

However, g(ml(!) < +x·. It follows that glm l( I ) is finite. This proof can be
completed by induction on i.

We are now ready to state our main theorem in this section.

THEOREM 3.3 (Characterization). For I ~ p < x, let f E LAO, I J and
let g: E K/:,.".

(a) For 1< p < x, let ¢Jp = sign(.f - g:) II - g:1 P-', and define Hp.,

as (2.3). Then g: is the best Lp approximation to I from K/:,." if and only iI

(i) H p.,( I) = 0, i = 1, 2, ..., m;

(ii) (-I)mHp.;(I)~O, i=m+ l, ... ,n;

(iii) (-I)mHp.,,(x)~O, XE[O, lJ;
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(iv) (f (-l)mHp.i(l)<o for some iE{m+I, ...,n}, then
g;<l - I l( I ) = 0;

(v) if(-I)mHp.n(x)<Ofor some XE(O, I), then g; is a polynomial
of degree n - I in a neighborhood of x.

(b) For p = 1, g~ is a hest L I approximation to f from K::'.n if and only
if there exists ¢J1ELex; with II¢Jtll:x:=1 and g¢Jl(f-gn=llf-g~III'
satisfying the conditions (i)-(v) of part (a) with p = 1.

Proof (a) This proof depends on the duality theorem, as the proof of
Theorem 23.1.

(Necessity) The proof for (i )-( iii) is similar to the proof for
(i)-(iii) in Theorem 2.1. To prove (iv) and (v), we establish the following
integration by parts:

... 1 " 1 I

J gNp= I (-lfHp,,+I(I)g;(i)(I-)+(-ltf Hp.nd(g;~n II). (3.1)
o i~m 0

A similar reasoning as in the proof of Theorem I of [15] gives

and Hp.mg;<m)EL1[0, I]. By Lemma 3.1, g;lm)(1 ) is finite, and thus, for
an arbitrarily small e > 0, Hp.m + 1 g;(m + I I ELI [e, I]. Hence, integration by
parts yields

rlH g*<m)=H (l)g*<m)(I-)-H (e)g*lml(e)p.m p p.m + I P p.m + 1 P
"'I:

-flH g*lm+l)p.m+ I p .
I:

If g;<m)(o+) is finite, then by letting f, ---.. °in (3.2), we obtain

(3.2)

.1 .1

j H g*(m)=H (I)g*(ml(l ')-j H g*lm+l) (3.3)p.m p p.m + 1 p p,m + I P ,
o 0

and H g*<m+I)EL [0 I] Otherwise we must have Ig*(m)(O+)1 =p,rn + 1 pI'·, p

+x. Since g;<m) is nonincreasing, there exists atE (0, I) such that Ig;(m)1
is nonincreasing on (0, t). Whenever 0< e < t,
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S· H *I",} L [0 I] h I' fo I *i",IH I - ° B hIDce ".'" gp E I , ,we ave Im... o 0 g" 1'.'" -. Y t e
above inequality,

('f

lim I Ig;(m)(t:) H".",+ I«;)! = 0.
I: ·.0"'0

Letting t: -> 0, we also come out with (3.3) and Hp .m + 1 g;i m + II ELI [0, I].
This procedure can be repeated to obtain (3.1).

Combining the duality theorem and (3.1) yields

n I (ot

L (-I)'H".i+I(l)g:ii)(l-)+(-I)"J H",,,d(g;I" 1»)=0.
;..:-m 0

The definition of an (m, n )-convex function together with (ii) and (iii)
implies that

i=m, ... , n-I, (3.4 )

and

• I

J H d(g*in 1»)=0.
p." p

o

Equations (3.4) and (3.5) give (iv) and (v), respectively.

(3.5 )

(Sufficiency) Assume g; E K::'. n and it satisfies conditions (i}-(v).
Then by (3.1), (2.1) holds. Also, (3.1) is true if we replace g; by any
gE K::'. n , Hence, (2.2) holds by using conditions (i}-(v). Consequently, g;
is a best Lp approximation to f from K::'.", since K::'." is a convex cone.

(b) Since the proof for p = I is similar, we omit the details. This
completes the proof.

This theorem can be extended to characterize a best L p approximation
from (m, n la-convex functions.

4. A RELAnONSHIP BETWEEN BEST ApPROXIMAnONS

FROM S:.n(L1) AND K::',n

We assume throughout this section that f E C[O, I] and I ~ P < oc. To
establish a relationship between best L p approximations to f from S~.,,(L1)

and K::'.", we need the following theorem.

THEOREM 4.1. For I ~ P < oc, let f E C[O, I] and g; E K/:,." he given.
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Assume that f =I g; a.e. in [0, I J and thatf - g; has a finite numher ofsif?n
changes in (0, 1). Let

I <p<x

p=1

and define Hp.i(x) as (2.3). Then f?; is a hest L p approximation to f from
K~." if and only if (i)(iv) (of Theorem 3.3) hold with I ~ p < x, and

(v)' f?; is a spline of degree n - 1 with simple knots ~ I' ~ 2' ... , ~" the
distinct zeros of H p." in (0, I).

Proof Let g; E K~." be a best (m, n )-convex L p approximation to.f By
the hypothesis,f - g; has a finite number of sign changes in (0, I). Assume
that the number of sign changes of f - g; in (0, I) is N. By the definition
of ifJp for 1~ P < CIJ, ifJp has N sign changes in (0, I). Since ifJp= H~~;" by
Rolle's Theorem, H p." has at most N + n zeros in (0, I), computing multi
plicities. Let ~ I < ~2 < '" < ~r be the distinct zeros of Hp." in (0, I), where
r~ N +n. Let ~o =°and ~r+ 1 = 1. Note that (-1) m Hp.,,(x) ~o, XE [0, I].
Hence,

for x E (C ~ i + I)' i = 0, I, 00" r.

Thus, by (v) of Theorem 3.3, g: is a polynomial of degree n - 1 on each
subinterval (~i' ~, + I)' Since g: E en - 2(0, 1), g; is a spline of degree n - 1
with simple knots ~l' ~2' 00" ~r'

Conversely, let g: satisfy the assumptions and conditions (i)-(iv) and
(v)'. If

(-I )mHp.,,(xo) <° for some Xo E (0, I),

then XO¢{~I'~2,oo"~r}' Hence, xoE(~j'~J+d for some index
jE{O, 1,oo.,r}. By (v)' g: is a polynomial of degree ~n-I on (~i'~j+I)'

which is a neighborhood of X o. Thus, by Theorem 3.3, g: is a best
Lp-approximation to f from K/:,.". This completes the proof.

By Theorem 2.1, 3.3 and the above theorem, the following theorem is
readily proved, which establishes a relationship between best approxima
tions tofEC[O, IJ from S:'.,,(,1') and K::'. n , where ,1'= {~i}~=I'

THEOREM 4.2. For I ~ p < x, let g: he a hest L p approximation to
fE C[O, 1J from K/:'.n with all assumptions in Theorem 4.1 satisfied. Let
,1'= {~i}~=1 he the distinct zeros of Hp.n in (0, I). Then

(i) g; is the hest approximation to f from S;-".,,(II');
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(ii) g; is the best L p approximation to ffrom the subspace

S;'** *(,1', ¢Jo) = {s E S~(,1'): stil( 1) = 0, i E l( ¢Jp)};

(iii) g~ is the unique best L 1 approximation to ffrom K/:,.".

Proof (i) It follows directly from Theorem 2.1, 3.3 and 4.1 that g; is
the best L p approximation toffrom S:;'.,,(,1').

(ii) By (i) and Theorem 2.2, g; is the best L p approximation to f
from S;'*(,1', ¢J p). Note gi};~ I are the distinct zeros of H p." in (0, I). J(<p p)
is an empty set. Hence, (ii) follows.

(iii) The uniqueness follows from (i) and the fact that there is a
unique best L 1 approximation tofEC[O, 1] from S:;'.,,(,1') (see [9]).

THEOREM 4.3. For I ~ p < x, let s; E S~.,,(,1) be the best Lp approxima
tion to f E Lp[O, 1] from S~.,,(,1). Assume that each knot x j in ,1 is a non
trivial knot of s;' Then s; is a best L p approximation to ffrom K/:,." if and
only if

(_l)m r(X-t)" l<p(t)dt~O,
.l;J

Proof Let s; be a best L p approximation to f from K::'.". By
Theorem 3.3, we have (_l)m HP.,,(x) ~ 0 for x E [0, )]. Since x j is a non
trivial knot of s;, (- 1r'Hp.,,(x j ) =°for j E N k . Hence,

( _l)mr(x - 1)"- 1¢J(1) dt = (-I )mHm.,,(x) - (-I )mHm.,,(x j )

x,

= (-))mHm.m(x), (4.3)

and thus, (4.2) holds.
Conversely, let (4.2) hold. By (4.3), we have (-l)mHp.n(x)~O for

XE [0,1]. Conditions (i), (ii), (iv), and (v) of Theorem 2.1, and the above
inequality imply conditions (i}-(v) of Theorem 3.3. Hence, s; is a best Lp

approximation to f from K::'.n' This completes the proof.

As an application, let us establish an interesting relationship between
best n-convex Lp approximation and best Lp approximation by n-convex
splines of degree n - I. Let K". p denote the set of n-convex functions in
Lp[O, I].

COROLLARY 4.1. Let f E C[O, I]. For I ~ p < aJ, let g; E K". p such that
f i' g; a.e. in [0, I] and f - g; has a finite number of sign changes in (0, 1).
Define ¢Jp as (4.1) and H p." as before. If g; is a best Lp approximation to
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ffrom K n . p, then K; is a best Lp approximation to I.trom S~)L1'), where
,1': 0 < ~ 1< ... < ~r < I, and the ~/s are the distinct zeros of Hp.n in (0, I).

5. BFST MONOTO,,"E CO,,"VEX L p ApPROXIMATION

As applications of the results in Section 3, we consider best L p

approximation by monotone convex functions, and the relationship
between best convex Lp approximation and best monotone convex L,.
approximation.

For I ~P<::fJ, let Mo(a,b) (resp., M1(a,b))cLp[a,b] be the set of
nonincreasing (resp., nondecreasing) convex functions on (a, b). Thus,
K(x)EMo(a,b) if and only if G(x)=g(-x)EM((-b, -a). In addition,
g*(x) is a best Lp approximation to I from M D(a, b) if and only if
G*(x)=g*(-x) is a best Lp approximation to F(x)=f(-x) from
M((-b, -a).

Since a nondecreasing convex function is (1.2 ),,-convex with (J = (I, - I )
and a nonincreasing function is (I, 2),,-convex with (J = (-I, -I), a similar
reasoning to the proof of Theorem 3.3 gives the following two corollaries of
Theorem 3.3:

COROLLARY 5.1. (a) For l<p<x:,g*EMo(a,b) (re!>p., M((a,b)) is
the best nonincreasing (resp., nondecreasing) convex Lp approximation to
IE Lp[a, b] if and only if

(i) f~¢p(x)dx=O;

(ii) f;,(t-x)¢p(x)dx~O (resp., f7(x-t)¢p(x)dx~0) for all
t E [a, b];

(iii) if f: x¢p(x) dx > 0 (resp., f~ x¢p(x) dx < 0), then g;' (h ) =0
(resp., g~:_ (a t ) = 0);

(iv) if t,°(to-x)dx<O (resp., f7o (x-to)¢p(x)dx<0) for some
toE (a, h), then g; is a linear polynomial in a neighborhood of to'

(b) For p = I, g~ E MD(a, h) (resp., M1(a, b)) is a best nonincreasing
(resp., nondecreasing) convex L I approximation to fELl [a, h] if and only if
there exists a ¢I EL'X'[a, b] with 11¢111.x.=1, f~¢I(f-gn=l;f-g~111

satisfving conditions (iHiv) in (a) with p= 1.

The next three theorems establish some relationships between best
convex L p approximation and bes monotone convex L p approximation.

THEOREM. 5.1. Let g; he a best convex Lp approximation to
IE Lp[O, I], for I ~ P < 00. Then, there exists atE [0, I] such that g: is
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hoth a best nonincreasing conVex Lp approximation to f on [0, t] and a hest
nondecreasing convex L" approximation to f on [t, I].

Proof If g; is nonincreasing (nondecreasing) on (0, I), then let t = I
(t = 0). Assume that g; is a nonmonotone convex function. Let

m=inf{g;(.X'):XE[O, I]}.

Then the set A = {x E [0, I]: g;(x) =m} is a nonempty and closed interval
contained in (0, I). Define t = inf A. Then, g; is nonincreasing on (0, t) and
nondecreasing on (t, I). By the definition of t, g; cannot be a linear poly
nomial in any neighborhood of t which contains t as an interior point. The
characterization of best convex approximation implies S~ (t - x) ¢Jp(x) dx = 0.
Thus, g; is a best approximation to f on both [0, t] and [t, I] (see
[15, 19]). Since the set of nonincreasing convex functions in Lp[O, t]
is contained in the set of convex functions in Lp[O, t], g; is also a best
nonincreasing convex approximation to f on [0, t]. Similarly, g; is a best
nondecreasing convex approximation to f on [t, 1[.

THEOREM 5.2. For I < p <x let f E Lp[O, I]. Assume t E (0, I). Let
gDE MD(O, t) (resp., g. E M.(t, I)) be the hest nonincreasing (resp., non
decreasing) convex Lp approximation to f on [0, t] (resp., on [t, I]). Define

¢J".D(X) = sign[f(x) - Ko(X)] If(x) - KD(X)I p- I,

tP"IX') = sign [f(x) - g.(x)] If(x) - gdx)1 p-- I,

and

for XE[O,t],

for XE [t, I],

XE[O,t]

XE(t,l].

Then, g is the best convex L" approximation to f on [0, I] if and only if

(i) gD(t) = g.(t),

(ii) S~ (t - x) tPP.D(X) dx = S~ (x -t) !PP.• (x) dx.

Proof Let

XE [0, t]

XE(t, I].

Assume g is the best convex Lp approximation to f on [0, 1]. Then K is
continuous on (0, I) and thus KD(t) = g.(t). In addition, by the charac-
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terization of best convex L" approximation, we have Jb!/J" = 0, and
Jb x!/Jp(x) dx = O. Hence,

If (t-x)q)p(x)dx=O
o

for all f E (0, 1).

It follows from this equation that (ii) holds.
Condition (i) with the facts that go is nonincreasing convex on [0, f]

and gI is nondecreasing convex on [t, 1] implies that g is convex on [0, 1].
By the assumptions, we find

r' !/Jp(X)dX=!' !/Jp.D(x)dx+f
1

q)p.I(x)dx=O
'0 0 I

and

j" xq)p(x) dx = II (t - x) q)".o(x) dx + il

(t - x) !/JP.t(X) dx = O.
o 0 J I

For x E [0, t],

fa' (x-u)!/J,,(u)du= fa' (x-u)q)p.D(u)du~O,

and for x E (t, I], by condition (ii),

fa' (x-u)q)p(u)du

= i' (x - u) q)P.o(u) du + r (x - u) !/Jp.I(U) du
'0 'I

=r(t - u) tPP.o(u) du + r' (x - f) q)p.I(U) du +r (f - u) tPp.I(U) du
o '( (

= r' (u-t)tPP.t(u)du-f' (u-t)¢ip.I(U)du+ r(x-t)q)p.I(u)du
oIt I oJl

,I fl
= J (u - f) ¢ip. I (u ) du - (x - f) q)p. I (u ) du

x x

= r(u - x) q)P.t(u) du ~ O.,

Assume that for some Xo E (0, 1), J~o (xo - u) q)p(u) du < O. If Xo E (0, f), then
go is a linear polynomial in a neighborhood of Xo and so is g. If X o E (f, 1),
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then by the above reasoning, we have J~u (u - x o) tPp,I(U) du < 0, Thus, gl is
a linear polynomial in a neighborhood of Xo and so is g. If X o = t, in view
of the continuity of J~ (x - u) tPp(u) du for XE [0,1 J,

r(x-u)tPp(u)du<O,
o

X E (t - 6" tJ, for some 15, > 0,

By the characterization of best nonincreasing convex Lp approximation, we
find that g'_ (t - ) = g;) _(t ) =°and g is a linear polynomial on (t - J, , t].
In addition, since (ii) holds, J~ (x-t)tPp,I(x)dx<O, Similarly, g't(t )=
g~+(t+)=O, and g is a linear polynomial on [t, t+b 2 ) for some 15 2 >0.
Hence,

Thus g'(t} exists and vanishes, Therefore g is a constant on (t - i5" t + (5 2 ).

The conditions that we verify guarantee that g is the best convex L,.
approximation to f on [0, 1].

For p = 1, we have the following similar result:

THEOREM 5.3. Let fEL,[O, IJ and tE(O, 1). Assume goEMo(O, t)
(resp., gI E M,(t, 1)) is a best nonincreasing (resp., nondecreasing) convex L,
approximation to f on [0, t] (resp., on [t, 1J). Define

X E [0, tJ

XE (t, 1J,

Let <1>(gD) be the set of tP E L,JO, tJ with IltPL, = 1 and g tP(f - go) =
Ilf-goll., satisfying conditions (i)-(v) of Corollary 5,1. Let <1>(gd be the
set oftPELoc[t,IJ with IltPll:x::=1 and J~tP(f-gd=llf-gIII" satisfying
conditions (iHv) of Corollary 5.1. Then, g is a best convex L, approxima
tion to f on [0, 1J if and only if

(i) gD(t) = g,(t),

(ii) there exist tPVE<1>(gD) and tP,E<1>(gd such that

r(t- x) tPD(X) dx =r(x - t) tP,(x) dx,
o r

Proof Let

XE[O,tJ
xE(t,l].



BEST L p APPROXIMATION

Then, II ¢J II ,x, = 1 and

r
I .( fI
¢J(f- g) = J ¢JD(f- g[)) + ¢JI(f - gd= 11/- gill'

'0 0 I
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The rest of this proof is similar to the proof of Theorem 5.2. This completes
the proof of Theorem 5.3.

Remark. All results in this paper could be generalized to Tchebycheffian
splines and to functions generalized convex with respect to an ECT-system.
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